随着 AIGC 的发展,AI 绘画逐渐进入我们的生活和工作。本文将探讨 AI 绘画技术的各个方面。从图像生成技术迈出的里程碑事件,到对 AI 绘画技术的深度科普,再到未来的发展趋势分析,相信本文将能够为大家揭示 AI 绘画背后的神秘面纱,一起来深入了解其技术原理吧。
我会通过两篇文章来对 AI 绘画产品进行分析,第一篇主要科普图像生成技术原理;第二篇是分析 AI 绘画产品商业化落地,算是我近期对 AI 绘画产品了解的一个总结输出,以下是第一篇内容。
2022 年 9 月一幅名为《太空歌剧院》的画作在数字艺术类别比赛中一举夺冠,这个震惊四座的画作由游戏设计师 Jason Allen 使用 Midjourney 完成,AI 绘画进入人们的视野。
人们第一次意识到 AI 做出来的画可以如此精美,意识到 AI 绘画可能如同当年相机、数字绘画的出现一样,会给绘画设计行业带来一场深刻的变革。
这篇文章从产品经理视角,了解 AI 绘画产品的背后有哪些算法模型、他们的技术原理是什么?不同技术的边界在哪里,使用场景在哪里?产品经理要懂得将算法合理的组合使用,以满足日常工作的需求,实现产品目标。
AI 绘画发展的主要节点
AI 绘画的底层原理
主流的图像生成模型解析
AI 绘画的可控性有哪些
AI 绘画的技术研究趋势 一、AI 绘画发展的主要节点
1. 2012 年 AI 画出了一只模糊的猫
吴恩达和杰夫安迪使用了 1.6 万个 CPU 和 You Tube 上 1000 万张猫的图片,用时 3 天时间训练了当时最大的深度学习模型,最终生成了一张猫脸。
虽然这张猫的图片看起来非常模糊,而且耗时又非常久,但对当时的计算机视觉来讲具有重要突破意义的尝试,开启了 AI 绘画研究的全新方向。
为什么当时基于深度学习模型的 AI 绘画那么麻烦?主要是整个模型需要利用大量标注好的训练数据,根据输入和所对应的预期输出,不断地调整模型内部的参数进行匹配。例如生成一张 512*512 *3(RGB)的画,要将这些像素有规律的组合,会涉及到庞大参数迭代调整的过程。